human targets localization

Impact of beacon interval on the performance of WiFi-based passive radar against human targets

The capability of WiFi-based passive radar to detect, track and profile human targets in both indoor and outdoor environment has been widely demonstrated. This paper investigates the impact of the Beacon Interval (BI) on the passive radar performance. The results of a dedicated acquisition campaign show that both the detection capability and the localization accuracy progressively degrade as the BI increases due to both the reduction of the received beacons and to the intrinsic undersampling of the target motion. Limit values are suggested for practical applications.

WiFi emission-based vs passive radar localization of human targets

In this paper two approaches are considered for human targets localization based on the WiFi signals: the device emission-based localization and the passive radar. Localization performance and characteristics of the two localization techniques are analyzed and compared, aiming at their joint exploitation inside sensor fusion systems. The former combines the Angle of Arrival (AoA) and the Time Difference of Arrival (TDoA) measures of the device transmissions to achieve the target position, while the latter exploits the AoA and the bistatic range measures of the target echoes.

2D localization with WiFi passive radar and device-based techniques: an analysis of target measurements accuracy

The aim of the work is to investigate the performance of two localization techniques based on WiFi signals: the WiFi-based passive radar and a device-based technique that exploits the measurement of angle of arrival (AoA) and time difference of arrival. This paper focuses specifically on the accuracy of the AoA measurements. As expected, the results show that for both techniques the AoA accuracy depends on the signal-to-noise ratio also in terms of the number of exploited received signal samples.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma