hydration

On the coordination of Zn2+ion in Tf2N-based ionic liquids: Structural and dynamic properties depending on the nature of the organic cation

A synergic approach combining molecular dynamics (MD) simulations and X-ray absorption spectroscopy has been used to investigate diluted solutions of zinc bis(trifluoromethanesulfonyl)imide (Zn(Tf2N)2) in Tf2N- based ionic liquids (ILs) having different organic cations, namely the 1-butyl-3-methylimidazolium ([C4(mim)]+), 1,8-bis(3-methylimidazolium-1-yl)octane ([C8(mim)2]2+), N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium ([Choline]+) and butyltrimethylammonium ([BTMA]+) ions.

Unraveling the hydration properties of the Ba2+ aqua ion: the interplay of quantum mechanics, molecular dynamics, and EXAFS spectroscopy

The structural and dynamic properties of the Ba2+ cation in water have been studied by combining quantum mechanical (QM) calculations, molecular dynamics (MD) simulations, and extended X-ray absorption fine structure (EXAFS) spectroscopy. An effective Ba2+-water interaction potential, to be used in the MD simulation of a Ba2+ aqueous solution, has been developed by means of QM methods, and the validity of the whole procedure has been assessed by comparing the theoretical structural results with the EXAFS experimental data.

Structure of water in Zn2+ aqueous solutions from ambient conditions up to the gigapascal pressure range: A XANES and molecular dynamics study

The structural modifications induced on a 0.5 M Zn2+ aqueous solution by increasing the pressure to 6.4 GPa were investigated using a combination of X-ray absorption near edge structure (XANES) spectroscopy and molecular dynamics (MD) simulations. The Zn K-edge XANES experimental spectra show two different trends depending on the pressure and temperature conditions of the system. On the one hand, when the pressure is increased to 1.0 GPa while keeping the temperature at 300 K, the highly structured nature of Zn2+ second hydration shell is preserved.

On the development of polarizable and Lennard-Jones force fields to study hydration structure and dynamics of actinide(III) ions based on effective ionic radii

In this contribution, we show how it is possible to develop polarizable and non-polarizable force fields to study hydration properties of a whole chemical series based on atomic properties such as ionic radii. In particular, we have addressed the actinide(III) ion series, from U 3+ to Cf 3+ , for which X-ray absorption data and effective ionic radii are available. A polarizable force field has been re-parameterized improving the original one [M. Duvail et al., J. Chem. Phys. 135, 044503 (2011)] which was based on solid state ionic radii.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma