impedance

Design of an X-band constant impedance LINAC for compact light project

Within the framework of Horizon 2020 project, Compact Light, in order to provide a high performance, high-gradient X-band technology, for the new generation of hard X-ray FEL, a travelling wave (TW) Linac, working on 2pi/3 mode at 11.9952 GHz, fed by two types of asymmetrically couplers, has been designed. The design was performed using CST Microwave Studio frequency domain solver. First, simulations have been conduct in order to obtain the best trade-off between single cell’s parameters, varying iris aperture.

Design of low-impact impedances devices: the new proton synchrotron booster absorber scraper (PSBAS)

At CERN the HL-LHC (High Luminosity Large Hadron Collider) and the LIU (LHC Injection Upgrade) projects call for an increase in beam parameters such as energy, intensityand brightness. To achieve this goal the whole accelerator complex will be upgraded. Systems, equipment and devices need to be redesigned and rebuilt accounting for the demanding new beam features. In this framework device impedance is a key parameter. It is essential to evaluate and to minimize the impedance of the component during its early design phase.

Analysis on the thermal response to beam impedance heating of the post LS2 proton synchrotron beam dump

The High Luminosity Large Hadron Collider (HL-LHC) and the LHC-Injection Upgrade (LIU) projects at CERN are upgrading the whole CERN accelerators chain to increase beam brightness and intensity. In this scenario, some critical machine components have to be redesigned and rebuilt. Due to the increase in beam intensity, minimizing the electromagnetic interaction between the beam and devices is a crucial design task. Indeed, these interactions could lead to beam instabilities and excessive thermo-mechanical loadings in the device.

Induced Effects in a Pacemaker Equipped with a Wireless Power Transfer Charging System

This paper deals with the intrasystem electromagnetic interference (EMI) in a pacemaker equipped with a wireless power transfer (WPT) charging system. The WPT application to pacemakers is very new, and no results are yet published on possible EMI effects produced by the WPT coil currents in the pacemaker pacing leads. To this aim, an efficient and original co-simulation circuit/field method is proposed to predict the induced voltages on a pacing lead. In the numerical calculation, the pacemaker with WPT secondary coil and a pacing lead is implanted in a sophisticated human body model.

A wideband and low side lobe series fed patch array at 5.8 GHz for radar applications

In this paper a novel series feed patch array working in the 5.8 GHz ISM band for healthcare radar monitoring applications has been proposed. The single patch has been opportunely shaped to solve two critical problems of this antenna topology: reduced bandwidth and high Side Lobe Level (SLL). The bandwidth enhancement has been obtained with a dual band structure, resulting from the superposition of two tapered patches with different lengths.

Systematic design of THz leaky-wave antennas based on homogenized metasurfaces

In this paper, a systematic design of Fabry-Perot cavity antennas based on leaky waves is proposed in the THz range. The use of different topologies for the synthesis of homogenized metasurfaces shows that a specific fishnetlike unit cell is particularly suitable for the design of efficient THz radiating devices. Accurate full-wave simulations highlight the advantages and disadvantages of the proposed geometries, thoroughly considering the bounds dictated by technological constraints and the homogenization limit as well.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma