impedance network boundary condition (INBC)

Conductive layer modeling by improved Second-Order artificial material single layer method

An improved second order artificial material single layer (AMSL) method is proposed to predict the electromagnetic field in presence of conductive thin layers by the finite element method (FEM). The AMSL method is based on the replacement of the material physical constants of a conductive shield region with those of an artificial material. The new AMSL physical constants are analytically extracted by equating the equivalent transmission line (TL) equations governing the field propagation inside the shield with the FEM solution.

Artificial material single layer to model the field penetration through thin shields in finite-elements analysis

A new artificial material single layer (AMSL) model is presented to solve shielding problem. The field penetration through the conductive shield is described by lossy transmission line equations. The resulting equations are used to numerically synthetize an equivalent material for the shield region having the same geometrical configuration of the original shield, but different specific constants.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma