Inbred C57BL

Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue

Decreased expression of mitochondrial frataxin (FXN) causes Friedreich's ataxia (FRDA), a neurodegenerative disease with type 2 diabetes (T2D) as severe comorbidity. Brown adipose tissue (BAT) is a mitochondria-enriched and anti-diabetic tissue that turns excess energy into heat to maintain metabolic homeostasis. Here we report that the FXN knock-in/knock-out (KIKO) mouse shows hyperlipidemia, reduced energy expenditure and insulin sensitivity, and elevated plasma leptin, recapitulating T2D-like signatures.

Comparison of 99m Tc-UBI 29-41, 99m Tc-ciprofloxacin, 99m Tc-ciprofloxacin dithiocarbamate and 111In-biotin for targeting experimental staphylococcus aureus and escherichia coli foreign-body infections. an ex-vivo study

BACKGROUND: Diagnosis of implant-associated infection is challenging. Several radiopharmaceuticals have been described but direct comparisons are limited. Here we compared in vitro and in an animal model Tc-99m-IJIBI, Tc-99m-cipmfloxacin, (TcN)-Tc-99m-CipmCS(2) and In-111-DTPA-biotin for targeting E. coli (ATCC 25922) and S. aureus (ATCC 43335).METHODS: Stability controls were performed with the labelled radiopharmaceuticals during 6 hours in saline and serum. The in vitro binding to viable or killed bacteria was evaluated at 37 degrees C and 4 degrees C.

AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis

Regulatory T cells (T reg ) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of T reg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human T reg differentiation and maintenance.

The deep-sea polyextremophile Halobacteroides lacunaris TB21 rough-type LPS: Structure and inhibitory activity towards toxic LPS

The structural characterization of the lipopolysaccharide (LPS) from extremophiles has
important implications in several biomedical and therapeutic applications. The polyextremophile
Gram-negative bacterium Halobacteroides lacunaris TB21, isolated from one of the most extreme
habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating
microorganism to investigate in terms of its LPS component. Here we report the elucidation of

Histone deacetylases contribute to excitotoxicity-triggered degeneration of retinal ganglion cells in vivo

Excitotoxicity is known to modulate the nuclear accumulation, and thus activity state, of histone deacetylases (HDACs) in pyramidal neurons. In the retina, deregulation in activity and expression of different HDACs has been linked to pathological conditions such as retinitis pigmentosa, retinal ischemia, glaucoma, and acute optic nerve injury. Up to now, however, the effects of in vivo excitotoxicity on the different HDACs in retinal ganglion cells (RGCs) have not been thoroughly investigated.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma