Information Systems

A Novel Stealthy Attack to Gather SDN Configuration-Information

Software Defined Networking (SDN) is a recent network architecture based on the separation of forwarding functions from network logic, and provides high flexibility in the management of the network. In this paper, we show how an attacker can exploit SDN programmability to obtain detailed knowledge about the network behaviour. In particular, we introduce a novel attack, named Know Your Enemy (KYE), which allows an attacker to gather vital information about the configuration of the network.

Performance evaluation of non-prefiltering vs. time reversal prefiltering in distributed and uncoordinated IR-UWB ad-hoc networks

Time Reversal (TR) is a prefiltering scheme mostly analyzed in the context of centralized and synchronous IR-UWB networks, in order to leverage the trade-off between communication performance and device complexity, in particular in presence of multiuser interference. Several strong assumptions have been typically adopted in the analysis of TR, such as the absence of Inter-Symbol / Inter-Frame Interference (ISI/IFI) and multipath dispersion due to complex signal propagation.

Obstacle detection system involving fusion of multiple sensor technologies

Obstacle detection is a fundamental task for Unmanned Aerial Vehicles (UAV) as a part of a Sense and Avoid system. In this study, we present a method of multi-sensor obstacle detection that demonstrated good results on different kind of obstacles. This method can be implemented on low-cost platforms involving a DSP or small FPGA. In this paper, we also present a study on the typical targets that can be tough to detect because of their characteristics of reflectivity, form factor, heterogeneity and show how data fusion can often overcome the limitations of each technology.

FLAPS: bandwidth and delay-efficient distributed data searching in fog-supported P2P content delivery networks

.Due to the growing interest for multimedia contents by mobile users, designing bandwidth and delay-efficient distributed algorithms for data searching over wireless (possibly, mobile) “ad hoc” Peer-to-Peer (P2P) content Delivery Networks (CDNs) is a topic of current interest. This is mainly due to the limited computing-plus-communication resources featuring state-of-the-art wireless P2P CDNs. In principle, an effective means to cope with this limitation is to empower traditional P2P CDNs by distributed Fog nodes. Motivated by this consideration, the goal of this paper is twofold.

P-SEP: a prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks

Energy efficiency is one of the main issues that will drive the design of fog-supported wireless sensor networks (WSNs). Indeed, the behavior of such networks becomes very unstable in node’s heterogeneity and/or node’s failure. In WSNs, clusters are dynamically built up by neighbor nodes, to save energy and prolong the network lifetime. One of the nodes plays the role of Cluster Head (CH) that is responsible for transferring data among the neighboring sensors. Due to pervasive use of WSNs, finding an energy-efficient policy to opt CHs in the WSNs has become increasingly important.

Evaluating visual data analysis systems: A discussion report

Visual data analysis is a key tool for helping people to make sense of and interact with massive data sets. However, existing evaluation methods (e.g., database benchmarks, individual user studies) fail to capture the key points that make systems for visual data analysis (or visual data systems) challenging to design. In November 2017, members of both the Database and Visualization communities came together in a Dagstuhl seminar to discuss the grand challenges in the intersection of data analysis and interactive visualization.

A power-of-two choices based algorithm for fog computing

The fog computing paradigm brings together storage, com-munication, and computation resources closer to users’ end-devices.Therefore, fog servers are deployed at the edge of the network, offeringlow latency access to users. With the expansion of such fog computingservices, different providers will be able to deploy multiple resourceswithin a restricted geographical proximity.In this paper, we investigate an incentive-based cooperation schemeacross fog providers.

A Vision-Based System for internal pipeline inspection

The internal inspection of large pipeline infrastructures, such as sewers and waterworks, is a fundamental task for the prevention of possible failures. In particular, visual inspection is typically performed by human operators on the basis of video sequences either acquired on-line or recorded for further off-line analysis. In this work, we propose a vision-based software approach to assist the human operator by conveniently showing the acquired data and by automatically detecting and highlighting the pipeline sections where relevant anomalies could occur.

Algorithms for hiring and outsourcing in the online labor market

Although freelancing work has grown substantially in recent years, in part facilitated by a number of online labor marketplaces, traditional forms of “in-sourcing” work continue being the dominant form of employment. This means that, at least for the time being, freelancing and salaried employment will continue to co-exist. In this paper, we provide algorithms for outsourcing and hiring workers in a general setting, where workers form a team and contribute different skills to perform a task. We call this model team formation with outsourcing.

Targeted interest-driven advertising in cities using Twitter

Targeted advertising is a key characteristic of online as well as traditional-media marketing. However it is very limited in outdoor advertising, that is, performing campaigns by means of billboards in public places. The reason is the lack of information about the interests of the particular passersby, except at very imprecise and aggregate demographic or traffic estimates. In this work we propose a methodology for performing targeted outdoor advertising by leveraging the use of social media.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma