Ionic liquids

Ab initio molecular dynamics study of phospho-amino acid-based ionic liquids: formation of zwitterionic anions in the presence of acidic side chains

We present a computational analysis of the complex proton-transfer processes in two protic ionic liquids based on phosphorylated amino acid anions. The structure and the short time dynamics have been analyzed via ab initio and semi-empirical molecular dynamics. Given the presence of mobile protons on the side chain, such ionic liquids may represent a viable prototype of highly conductive ionic mediums. The results of our simulations are not entirely satisfactory in this respect.

Communication: Anion-specific response of mesoscopic organization in ionic liquids upon pressurization

One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.

Nanoscale organization in the fluorinated room temperature ionic liquid: Tetraethyl ammonium (trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide

Fluorinated Room Temperature Ionic Liquids (FRTILs) are a branch of ionic liquids that is the object of growing interest for a wide range of potential applications, due to the synergic combination of specifically ionic features and those properties that stem from fluorous tails. So far limited experimental work exists on the micro- and mesoscopic structural organization in this class of compounds. Such a work is however necessary to fully understand morphological details at atomistic level that would have strong implications in terms of bulk properties.

Mesoscopic structural organization in fluorinated pyrrolidinium-based room temperature ionic liquids

In this contribution the microscopic and mesoscopic structural organization in a series of fluorinated room temperature ionic liquids, based on N-methyl-N-alkylpyrrolidinium cations and on bis(perfluoroalkylsulfonyl)imide anions, is investigated, using a synergy of experimental (X-ray and neutron scattering) and computational (Molecular Dynamics) techniques. The proposed ionic liquids are of high interest as electrolyte media for lithium battery applications.

Coupled hydroxyl and ether functionalisation in EAN derivatives: the effect of hydrogen bond donor/acceptor groups on the structural heterogeneity studied with X-Ray diffractions and fixed charge/polarizable simulations

We present a study by energy-dispersive X-ray diffraction of liquid 2-(2-hydroxyethoxy)ethan-1-ammonium nitrate, NH3CH2CH2(OCH2CH2OH)+NO3- (22HHEAN). This ionic liquid is derived from the parent ethylammonium nitrate (EAN) with an ether link in the chain and a hydroxyl group in the terminal position. The absence of peaks at low-q values in the experimental diffraction curve indicates that the added polar groups and the high conformational isomerism of the cations alter strongly the nanosegregation of the parent EAN liquid.

Influence of counterions on the hydration structure of Lanthanide ions in dilute aqueous solutions

A synergic approach combining molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) has been used to investigate diluted (0.1 M) aqueous solutions of two lanthanide ions (Ln3+), namely, La3+ and Dy3+, with triflate, nitrate, and bis(trifluoromethylsulfonyl)imide (Tf2N-) as counterions. The different complexing ability of the three anions has been highlighted by the analysis of the MD simulations: Tf2N- does not form inner-sphere complexes, while a small amount of triflate coordinates both the La3+ and Dy3+ cations in their first solvation shell.

New evidences about conformational equilibrium in ammonium-TFSI ionic liquids: the X-Ray scattering patterns of TMHA- and TMPA-TFSI interpreted with molecular dynamics simulations

The X-Ray scattering patterns of the two ionic liquids, N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI) and N-trimethyl-N-hexylammonium bis(trifluoromethanesulfonyl)imide (TMHA-TFSI), sharing a common anion and differing in the length of the alkyl chain of the cation, were measured at room temperature. Molecular dynamics calculations supported the interpretation of the data. The two force field models, GAFF and DLPOLY 4, were adopted to simulate the scattering patterns.

Theoretical Insights into the Structure of the Aminotris(Methylenephosphonic Acid) (ATMP) Anion: A Possible Partner for Conducting Ionic Media

We present a computational characterisation of Aminotris(methylenephosphonic acid) (ATMP) and its potential use as an anionic partner for conductive ionic liquids (ILs). We argue that for an IL to be a good candidate for a conducting medium, two conditions must be fulfilled: (i) the charge must be transported by light carriers; and (ii) the system must maintain a high degree of ionisation. The result trends presented herein show that there are molecular ion combinations that do comply with these two criteria, regardless of the specific system used.

Activated biochars used as adsorbents for dyes removal

Adsorption represents one of the most interesting technique for the removal of pollutants from wastewaters. Activated carbons show the best performances on this kind of processes but their high production costs limit their applications. In this context a big challenge is to find new materials having characteristic similar to those of commercial activated carbons but being environmental friendly and cheaper. In this work the adsorption efficiency of activated biochars produced from pine wood was investigated on the removal of dyes from water.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma