Ions

Performance Evaluation of the TOF-Wall Detector of the FOOT Experiment

The correct quantification of the dose released in charged particle therapy treatments requires the knowledge of the double differential fragmentation cross section of particles composing both beam and target. The FOOT experiment aims at measuring these cross sections for ions of interest for charged particle therapy applications. The paper describes the performance of the TOF-Wall detector of the experiment. The detector is composed of two layers of 44 cm x 2 cm x 3 mm plastic scintillator bars (20 for each layer), arranged orthogonally and read out by silicon photomultipliers.

Scintillating fiber devices for particle therapy applications

Particle Therapy (PT) is a radiation therapy technique in which solid tumors are treated with charged ions and exploits the achievable highly localized dose delivery, allowing to spare healthy tissues and organs at risk. The development of a range monitoring technique to be used on-line, during the treatment, capable to reach millimetric precision is considered one of the important steps towards an optimization of the PT efficacy and of the treatment quality.

A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles

We studied the size distribution of ions (Cl−, NO3−, SO4=, Na+, NH4+, K+, Mg++, Ca++) and elements (As, Ba, Cd, Co, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn) during the winter and summer seasons of seven consecutive years (2008–2014) in an area of the Po Valley (Northern Italy) characterised by industrial, agricultural and urban settings. The study included the collection and analysis of 41 series of size-segregated samples (MOUDI sampler, 10 stages, cut sizes from 0.18 to 18 μm).

Controlling ionic conductivity through transprotein electropores in human aquaporin 4: A non-equilibrium molecular-dynamics study

Electroporation is a matter of intensive ongoing research interest, and a much-neglected topic in trans-membrane proteins, particularly in view of such promising potential applications in medicine and biotechnology. In particular, selected such novel and exciting applications are predicated on controlling ionic conductivity through electro-pores.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma