kinetic

The folding mechanism of the SH3 domain from Grb2

SH3 domains are small protein modules involved in the regulation of important cellular pathways. These domains mediate protein-protein interactions recognizing motifs rich in proline on the target protein. The SH3 domain from Grb2 (Grb2-SH3) presents the typical structure of an SH3 domain composed of two-three stranded antiparallel β-sheets orthogonally packed onto each other, to form a single hydrophobic core. Grb2 interacts, via SH3 domain, with Gab2, a scaffolding disordered protein, triggering some key metabolic pathways involved in cell death and differentiation.

Biomechanical characterization of the junzuki karate punch: indexes of performance

The aims of this study were: (i) to determine kinematic, kinetic, and electromyographic characteristics of Junzuki karate punch in professional karate athletes; (ii) to identify biomechanical parameters that correlate with punch force and lead to a higher punching performance; (iii) to verify the presence of muscle co-activation in the upper limb, trunk, and lower limb muscles. Data were collected from nine experienced karatekas from the Accademia Italiana Karate e Arti Marziali during the execution of the specific punch.

Revealing the secret life of pre-implantation embryos by time-lapse monitoring: a review

High implantation success following in vitro fertilization cycles are achieved via the transfer of embryos with the highest developmental competence. Multiple pregnancies as a result of the transfer of several embryos per cycle accompany with various complication. Thus, single-embryo transfer (SET) is the preferred practice in assisted reproductive technique (ART) treatment. In order to improve the pregnancy rate for SET, embryologists need reliable biomarkers to aid their selection of embryos with the highest developmental potential.

Characterizing toluene adsorption onto carbon nanotubes for environmental applications

Two different types of carbon nanotubes (CNTs), multi-walled and single-walled carbon nanotubes (MWCNTs and SWCNTs, respectively), have been characterized as new potential sorbents for contaminant removal from aqueous phase and can be used through different technological implementations. The performance of the materials has been evaluated in comparison with the most commonly used carbonaceous material, activated carbon (AC). Adsorption properties were evaluated by kinetic and equilibrium batch tests in aqueous solution at different salinity levels.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma