kluyveromyces lactis

The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis

Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling.

Phenotypic suppression caused by resonance with light-dark cycles indicates the presence of a 24-hours oscillator in yeast and suggests a new role of intrinsically disordered protein regions as internal mediators

The mutual interaction between environment and life is a main topic of biological sciences. An interesting aspect of this interaction is the existence of biological rhythms spanning all the levels of organisms from bacteria to humans. On the other hand, the existence of a coupling between external oscillatory stimuli and adaptation and evolution rate of biological systems is a still unexplored issue.

Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis

Background: Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/
cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity
and duration of the cyclic nucleotides signal modulating the downstream biological efect. Due to this critical role
associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11)

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma