knowledge discovery

Mining m-grams by a granular computing approach for text classification

Text mining and text classification are gaining more and more importance in AI related research fields. Researchers are particularly focused on classification systems, based on structured data (such as sequences or graphs), facing the challenge of synthesizing interpretable models, exploiting gray-box approaches. In this paper, a novel gray-box text classifier is presented. Documents to be classified are split into their constituent words, or tokens. Groups of frequent m tokens (or m-grams) are suitably mined adopting the Granular Computing framework.

A review of the enabling methodologies for knowledge discovery from smart grids data

The large-scale deployment of pervasive sensors and decentralized computing in modern smart
grids is expected to exponentially increase the volume of data exchanged by power system applications.
In this context, the research for scalable and flexible methodologies aimed at supporting rapid decisions
in a data rich, but information limited environment represents a relevant issue to address. To this aim,
this paper investigates the role of Knowledge Discovery from massive Datasets in smart grid computing,

A review of the enabling methodologies for knowledge discovery from smart grids data

The large-scale deployment of pervasive sensors and decentralized computing in modern smart grids is expected to exponentially increase the volume of data exchanged by power system applications. In this context, the research for scalable, and flexible methodologies aimed at supporting rapid decisions in a data rich, but information limited environment represents a relevant issue to address.

A Review of the enabling methodologies for knowledge discovery from smart grids data

The large-scale deployment of pervasive sensors and decentralized computing in modern smart grids is expected to exponentially increase the volume of data exchanged by power system applications. In this context, the research for scalable, and flexible methodologies aimed at supporting rapid decisions in a data rich, but information limited environment represents a relevant issue to address.

An agent-based algorithm exploiting multiple local dissimilarities for clusters mining and knowledge discovery

We propose a multi-agent algorithm able to automatically discover relevant regularities in a given dataset, determining at the same time the set of con?gurations of the adopted parametric dissimilarity measure that yield compact and separated clusters. Each agent operates independently by performing a Markovian random walk on a weighted graph representation of the input dataset. Such a weighted graph representation is induced by a speci?c parameter con?guration of the dissimilarity measure adopted by an agent for the search.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma