latent variables

A bidimensional finite mixture model for longitudinal data subject to dropout

In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution.

Evaluating intervention programs with a pretest-posttest design. A structural equation modeling approach

A common situation in the evaluation of intervention programs is the researcher's possibility to rely on two waves of data only (i.e., pretest and posttest), which profoundly impacts on his/her choice about the possible statistical analyses to be conducted. Indeed, the evaluation of intervention programs based on a pretest-posttest design has been usually carried out by using classic statistical tests, such as family-wise ANOVA analyses, which are strongly limited by exclusively analyzing the intervention effects at the group level.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma