long short-term memory network

Deep Neural Networks for Multivariate Prediction of Photovoltaic Power Time Series

The large-scale penetration of renewable energy sources is forcing the transition towards
the future electricity networks modeled on the smart grid paradigm, where energy clusters call for new
methodologies for the dynamic energy management of distributed energy resources and foster to form
partnerships and overcome integration barriers. The prediction of energy production of renewable energy
sources, in particular photovoltaic plants that suffer from being highly intermittent, is a fundamental tool

A combined deep learning approach for time series prediction in energy environments

In smart grids and microgrids, time series prediction is a fundamental tool for enabling intelligent energy resource management and advanced interactions between heterogeneous agents. In this work, we propose a solution to the energy forecasting problem based on two machine learning techniques: Convolutional Neural Network and Long Short-Term Memory Network. These techniques are combined with a new embedding format to appropriately feed the time series to the stacked network architecture.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma