Machine replication

Brief announcement: Optimal self-stabilizing mobile byzantine-tolerant regular register with bounded timestamps

This paper investigates on the implementation of a self-stabilizing regular register emulated by n servers that is tolerant to both mobile Byzantine agents, and transient failures in a round-free synchronous model. Differently from existing Mobile Byzantine tolerant register implementation, this paper considers a more powerful adversary where (i) the message delay (i.e., δ) and the period of mobile Byzantine agents movement (i.e., Δ) are completely decoupled and (ii) servers are not aware of their state i.e., they do not know if they have been corrupted or not by a mobile Byzantine agent.

PBFT vs proof-of-authority: Applying the CAP theorem to permissioned blockchain

Permissioned blockchains are arising as a solution to federate companies prompting accountable interactions. A variety of consensus algorithms for such blockchains have been proposed, each of which has different benefits and drawbacks. Proof-of-Authority (PoA) is a new family of Byzantine fault-tolerant (BFT) consensus algorithms largely used in practice to ensure better performance than traditional Practical Byzantine Fault Tolerance (PBFT).

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma