Male meiosis

Drosophila doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation

During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Drosophila Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis.

The Drosophila Citrate Lyase Is Required for Cell Division during Spermatogenesis

The Drosophila melanogaster DmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins and histones.

Drosophila male meiosis

In Drosophila males, there is no synaptonemal complex and recombination does not occur. Thus, Drosophila male meiosis is a good model system for the analysis of achiasmate chromosome segregation. In addition, due to their large size, the meiotic spindles of Drosophila males are an excellent system for mutational dissection of the mechanisms of spindle assembly. Here, we describe the main techniques for visualization of live Drosophila testes and for preparation of fixed meiotic chromosomes and spindles.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma