Efficient Fast Open-Loop Attitude Control Strategy for Earth Imaging Nanospacecraft
This paper proposes a computationally efficient attitude control strategy for nanospacecraft fast reorientation maneuvers. The paper considers a 3U CubeSat for visual Earth observation missions with deployable solar panels, equipped with three reaction wheels, three magnetorquers, and a miniature star imager, due to a 0.1° stringent targeting requirement of the payload. The star imager is very accurate, but operational only at very small angular rates. Hence it cannot be used for attitude measurement during fast slewing maneuvers.