materials chemistry

Effect of nano-magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites

Magnetic nanoparticles embedded in polymer matrices have excellent potential for electromagnetic device applications, like electromagnetic interference suppression or strain sensing applications in the structural health monitoring domain. In this work, polymer nanocomposites of polypropylene loaded with varying concentrations of magnetite nanoparticles (from 2 to 40 wt%) have been synthesized by an ex situ process. The magnetite nanoparticles were produced using a simple co-precipitation technique.

The effect of the temperature-time mode of crystallization on the morphology and thermal properties of nanocomposites based on polypropylene and magnetite (Fe3O4)

In the present study, the influence of the temperature–time mode of crystallization (TTC) on the morphology and thermal properties of PP/Fe3O4 nanocomposite materials was investigated. The morphology of the nanocomposites prepared in different TTC mode was studied by atomic force microscope. AFM study shows that the root mean square roughness of samples is 90–95, 50, 21 nm for PP/Fe3O4@20, PP/Fe3O4@200 and PP/Fe3O4@20000 respectively. Thermo gravimetric analysis was employed to investigate the thermal stability of PP/Fe3O4 nanocomposites obtained applying different TTC modes.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma