Materials for gaseous detectors

A study of asymmetric tensile properties of large area GEM foil

Gas Electron Multiplier (GEM) technology is being used in various applications, particularly in high energy physics experiments. The GEM is known as a reliable detector in high radiation environment which can maintain high temporal and position resolution. GEM foil is the basic part of the detector which consists of a composite material (polyimide and copper). Large size GEM foil has complex mechanical structure and asymmetries which mainly arises due to formation of the HV sectors in the foil. These asymmetries become very relevant when large size foils are stretched to build a detector.

Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

Gas detectors for elementary particles require F-based gases for optimal performance.
Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or
banned. This work studies properties of potential eco-friendly gas replacements by computing the
physical and chemical parameters relevant for use as detector media, and suggests candidates to be
considered for experimental investigation.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma