materials science (all)

Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol.

Mechanical properties of a TiAl-based alloy at room and high temperatures

Intermetallic titanium aluminides have attracted considerable industrial interest for aero and automotive applications owing to their specific strength. These alloys are candidates for high-temperature applications such as turbine blades and turbocharger turbine wheels. In this work, the mechanical behaviour of an as-cast Ti–47Al–3Cr–3Nb (at.-%) alloy was studied. Four-point bending tests were performed to determine the mechanical properties of the alloy at both room and high temperatures. Microhardness and Young’s modulus were evaluated by dynamic indentation tests at room temperature.

Fatigue analysis of a near-equiatomic pseudo-elastic NiTi SMA

In the present paper, the fatigue behaviour of a near-equiatomic pseudo-elastic NiTi SMA (Shape Memory Alloy) is experimentally examined by means of tensile cyclic loading tests. In situ X-ray Diffraction (XRD) analyses are also performed in order to measure the contents of both austenite and martensite phase during testing. The experimental campaign highlights a stress–strain diagram defined through five different stress–strain functions.

Grain size and loading conditions influence on fatigue crack propagation in a Cu-Zn-Al shape memory alloy

Due to their capability to recover the initial shape, Shape Memory Alloys (SMAs) are widely used in many applications. Different grades are commercially available and they can be classified considering either their chemical compositions (e.g., Cu based, Ni based, Fe based) or according to their mechanical behaviour. The most used SMAs are the Ni based alloys thanks to their performances both in terms of mechanical resistance and in terms of fatigue resistance, but their costs are quite high. Cu based alloys are good competitors of the Ni based alloys.

Stimuli-responsive tannin–feIII hybrid microcapsules demonstrated by the active release of an anti-tuberculosis agent

A simple and facile strategy for the creation of ferric tannin microcapsules around a liquid, non-sacrificial core is described. The assembly of the capsules occurs rapidly once ferric tannin complexes are subjected to ultrasonic treatment. The driving forces for the rapid capsule assembly reside in the strategy of adding ferric ions into the initial emulsion, which promotes shell formation and stability through well-known complexation effects.

Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin

Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellantransfersomes obtained by an easy, scalable method. The vesicles were small in size (similar to 107 nm) and monodispersed (P.I.

Human biomolecular corona of Liposomal Doxorubicin: the overlooked factor in anticancer drug delivery

More than 20 years after its approval by the Food and Drug Administration (FDA), liposomal doxorubicin (DOX) is still the drug of choice for the treatment of breast cancer and other conditions such as ovarian cancer and multiple myeloma. Yet, despite the efforts, liposomal DOX did not satisfy expectations at the clinical level. When liposomal drugs enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BC).

Numerical integration of the contravariant integral form of the Navier–Stokes equations in time-dependent curvilinear coordinate systems for three-dimensional free surface flows

We propose a three-dimensional non-hydrostatic shock-capturing numerical model for the simulation of wave propagation, transformation and breaking, which is based on an original integral formulation of the contravariant Navier–Stokes equations, devoid of Christoffel symbols, in general time-dependent curvilinear coordinates. A coordinate transformation maps the time-varying irregular physical domain that reproduces the complex geometries of coastal regions to a fixed uniform computational one.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma