On symplectic semifield spreads of PG(5,q2), q odd
We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG ( 5 , q2), for q2> 2 .38odd, whose associated semifield has center containing Fq. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2> 2 .38odd, with middle nucleus containing q2Fq2and center containing q Fq.