mdx mice

Dystrophin is required for the proper timing in retinal histogenesis: a thorough investigation on the mdx mouse model of Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by
defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic
and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter
isoforms. Because of this, DMD patients may also experience different forms of cognitive
impairment, neurological and autonomic disorders, and specific visual defects. DMDrelated
damages to the nervous system are established during development, suggesting

Cultured hippocampal neurons of dystrophic mdx mice respond differently from those of wild type mice to an acute treatment with corticosterone

Duchenne muscular dystrophy is a lethal genetic disease characterised by progressive degeneration of skeletal muscles induced by deficiency of dystrophin, a cytoskeletal protein expressed in myocytes and in certain neuron populations. The severity of the neurological disorder varies in humans and animal models owing to dysfunction in numerous brain areas, including the hippocampus.

NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice

Duchenne muscular dystrophy (DMD) is a lethal disease, determined by lack of dystrophin (Dp427), a muscular cytoskeletal protein also expressed by selected neuronal populations. Consequently, besides muscular wasting, both human patients and DMD animal models suffer several neural disorders. In previous studies on the superior cervical ganglion (SCG) of wild type and dystrophic mdx mice (Lombardi et al. 2008), we hypothesized that Dp427 could play some role in NGF-dependent axonal growth, both during development and adulthood.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma