Mechanics of Materials

CubeSat-life ground test facility: Ground facility to simulate a CubeSat environment for the cultivation of ideotype tomato plants

This paper is aimed at demonstrating the possibility of growing a tomato ideotype, fortified in anti-oxidant content (derived from Micro-Tom, a model cultivar for tomato research overexpressing anthocyanins) and specifically developed for spatial environment, in a seed-to-seed cycle (70-90 days) on a CubeSat. To reach this goal, a dedicated micro satellite equivalent to 12 U will be developed to be sent into low-orbit. Growing plants in space is a prerequisite to sustain long-term human exploration of the solar system.

Scalable production of calcite nanocrystals by atomization process: Synthesis, characterization and biological interactions study

Nowadays, there is strong interest in the development of smart inorganic nanostructured materials as tools for targeted delivery in cancer cells. We proposed a novel synthetic procedure of calcium carbonate nanocrystals (NCs) and their use as drug delivery systems, studying the physical chemical properties and the in vitro interaction with two model cancer cells.

Operational characterization of CSFH MEMS technology based hinges

Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility.

Three-Dimensional numerical modelling of historical masonry stuctures affected by tunnelling-induced settlements

This paper focuses on the interaction between tunnelling and historical masonry structures. These latter often characterise the centre of many cities and should be preserved from possible tunnelling-induced damage. In recent years the Authors of this contribution have adopted an advanced numerical approach to investigate this issue in the two-dimensional domain, schematising the block masonry structure as a homogenised anisotropic medium [1, 2]. This study extends the approach to three-dimensional conditions.

Comparison of methods for evaluating airport pavement roughness

The correct and timely assessment of the airport pavements surface quality is fundamental to verify the presence of any irregularities that could be detrimental to aircraft operations. Furthermore, a rough runway can increase the maintenance costs of both pavements and aircrafts landing gears, due to the increment of dynamic loads and fatigue phenomena on airplanes structural elements, reducing their service life.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma