metasurfaces

Systematic design of THz leaky-wave antennas based on homogenized metasurfaces

In this paper, a systematic design of Fabry-Perot cavity antennas based on leaky waves is proposed in the THz range. The use of different topologies for the synthesis of homogenized metasurfaces shows that a specific fishnetlike unit cell is particularly suitable for the design of efficient THz radiating devices. Accurate full-wave simulations highlight the advantages and disadvantages of the proposed geometries, thoroughly considering the bounds dictated by technological constraints and the homogenization limit as well.

Terahertz leaky-wave antennas based on metasurfaces and tunable materials

Metamaterials have provided applications in spectral ranges covering radio frequencies and ultraviolet. However, most applications have been extrapolated to the visible or near-infrared after being developed at the GHz level. This is due to technological reasons since fabrication of microwave antennas is not as demanding as THz resonators or plasmonic nanostructures. Accordingly, this book has been divided into three parts. In the first part, fundamentals of metamaterials and metadevices are discussed, while describing recent advances in the field.

Design-flow of Fabry-Perot cavity leaky-wave antennas based on homogenized metasurfaces

In this work, a design flow for leaky-wave antennas based on metasurfaces is proposed. In particular, the possibility to extract the surface impedance of partially reflecting surfaces (PRS) for which homogenization formulas are not yet available in the literature has been exploited by means of numerical tools. The knowledge of the surface impedance in a PRS-based Fabry-Perot cavity leaky-wave antenna (FPC-LWA) allows for accurately evaluating the radiating performance by means of simple analytical formulas.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma