microbial biofilm

Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers

Despite advances in material sciences and clinical procedures for surgical hygiene, medical device implantation still exposes patients to the risk of developing local or systemic infections. The development of efficacious antimicrobial/antifouling materials may help with addressing such an issue. In this framework, polyethylene glycol (PEG)-grafted segmented polyurethanes were synthesized, physico-chemically characterized, and evaluated with respect to their bacterial fouling-resistance properties. PEG grafting significantly altered the polymer bulk and surface properties.

Usnic acid: potential role in management of wound infections

Usnic acid (UA) is a secondary lichen metabolite extensively studied for the broad variety of biological features. The most interesting property of UA is its antimicrobial activity against Gram-positive bacteria growing either in planktonic or in biofilm mode. In this chapter, the most relevant studies assessing usnic acid activity against microbial biofilms have been summarized and the potential role of UA in the management of biofilm-based wound infections has been critically discussed.

Role of antioxidant molecules and polymers in prevention of bacterial growth and biofilm formation

Background: Antioxidants are multifaceted molecules playing a crucial role in several cellular functions. There is by now a well-established knowledge about their involvement in numerous processes associated with aging, including vascular damage, neurodegenerative diseases and cancer. An emerging area of application has been lately identified for these compounds in relation to the recent findings indicating their ability to affect biofilm formation by some microbial pathogens, including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.

Antifouling and antimicrobial biomaterials: an overview

The use of implantable medical devices is a common and indispensable part of medical care for both diagnostic and therapeutic purposes. However, as side effect, the implant of medical devices quite often leads to the occurrence of difficult-to-treat infections, as a consequence of the colonization of their abiotic surfaces by biofilm-growing microorganisms increasingly resistant to antimicrobial therapies.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma