Microtubules

The Aurora-A/TPX2 axis directs spindle orientation in adherent human cells by regulating NuMA and microtubule stability

Mitotic spindle orientation is a crucial process that defines the axis of cell division, contributing to daughter cell positioning and fate, and hence to tissue morphogenesis and homeostasis.1,2 The trimeric NuMA/LGN/Gαi complex, the major determinant of spindle orientation, exerts pulling forces on the spindle poles by anchoring astral microtubules (MTs) and dynein motors to the cell cortex.3,4 Mitotic kinases contribute to correct spindle orientation by regulating nuclear mitotic apparatus protein (NuMA) localization,5-7 among which the Aurora-A centrosomal kinase regulates NuMA targeting

Moonlighting in Mitosis: Analysis of the Mitotic Functions of Transcription and Splicing Factors

Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions.

Towards modern anticancer agents that interact with tubulin

Tubulin is the primary target of an ever growing number of natural, semisynthetic and synthetic products as potential anticancer agents. The mechanisms of interaction of these molecules with tubulin are varied. These drug classes have shown to inhibit effectively several cancer types with IC50 from midmicromolar to low nanomolar concentrations. However, some limiting obstacles still remain, such as the development of multidrug resistance and cytotoxicity.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma