Growth of nanostructured silicon by microwave/nano-susceptors technique with low substrate temperature
We present a new technique which allows the growth of silicon nanostructures at low temperature, in different forms. The growth takes place with the presence of a gaseous silicon precursor and a metal catalyst, once the eutectic temperature is overcome. The technique we present is based on heating limited to the metal nanoparticles, by irradiation of Microwaves. The so called nano-susceptors absorbs energy that produces large local increase of temperature. Only the metal nanoparticles reach high temperatures.