mitochondria

Nucleotides and nanoRNA homeostasis characterization and targeting.

Nucleotides and nanoRNA homeostasis characterization and targeting.

Phosphodiesterases (PDEs) are relevant for biological processes such as RNA homeostasis (exoribonucleases) and second messengers-mediated signal transduction, including mono- and dinucleotides; targeting of selected PDEs in different pathological processes may offer therapeutic strategies.

Canonical and noncanonical roles of fanconi anemia proteins: Implications in cancer predisposition

Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress.

Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression

The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD) has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs) and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression.

Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence

The identification of the mechanisms predisposing to stroke may improve its preventive and therapeutic strategies in patients with essential hypertension. The role of macroautophagy/autophagy in the development of hypertension-related stroke needs to be clarified. We hypothesized that a defective autophagy may favor hypertension-related spontaneous stroke by promoting mitochondrial dysfunction. We studied autophagy in the stroke-prone spontaneously hypertensive (SHRSP) rat, which represents a clinically relevant model of stroke associated with high blood pressure.

The role of mitochondrial dynamics in cardiovascular diseases

The process of mitochondrial dynamics is emerging as a core player in cardiovascular homeostasis. This process refers to the co-ordinated cycles of biogenesis, fusion, fission and degradation to which mitochondria constantly undergo to maintain their integrity, distribution and size. These mechanisms represent an early response to mitochondrial stress, confining organelle portions that are irreversibly damaged and preserving mitochondrial function.

Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle

Cachexia is a wasting syndrome characterized by the continuous loss of skeletal muscle mass due to imbalance between protein synthesis and degradation, which is related with poor prognosis and compromised quality of life. Dysfunctional mitochondria are associated with lower muscle strength and muscle atrophy in cancer patients, yet poorly described in human cachexia. We herein investigated mitochondrial morphology, autophagy and apoptosis in the skeletal muscle of patients with gastrointestinal cancer-associated cachexia (CC), as compared with a weight-stable cancer group (WSC).

Targeting mitochondria in Alzheimer disease: rationale and perspectives

A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders, including Alzheimer disease (AD). Mitochondria—the power station of the organism—can affect several different cellular activities, including abnormal cellular energy generation, response to toxic insults, regulation of metabolism, and execution of cell death.

Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue

Decreased expression of mitochondrial frataxin (FXN) causes Friedreich's ataxia (FRDA), a neurodegenerative disease with type 2 diabetes (T2D) as severe comorbidity. Brown adipose tissue (BAT) is a mitochondria-enriched and anti-diabetic tissue that turns excess energy into heat to maintain metabolic homeostasis. Here we report that the FXN knock-in/knock-out (KIKO) mouse shows hyperlipidemia, reduced energy expenditure and insulin sensitivity, and elevated plasma leptin, recapitulating T2D-like signatures.

Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: a harmful synergistic path in down syndrome

Dysregulation of brain insulin signaling with reduced downstream neuronal survival and plasticity mechanisms are fundamental abnormalities observed in Alzheimer disease (AD). This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the inhibition of IRS1. Since Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration in DS and whether they contribute to early onset AD in DS.

Involvement of the biogenic active amine agmatine in mitochondrial membrane permeabilization and release of pro-apoptotic factors

Agmatine (AGM) produces a dual effect on the mitochondrial permeability transition (MPT) mechanism in rat liver mitochondria: at low concentrations, it induces the phenomenon, at high ones, inhibits it. The prevention at high concentrations is evidenced by the significant inhibition of mitochondrial swelling induced by Ca2+ and phosphate; in this condition, AGM both prevents the release of Apoptosis Inducing Factor (AIF) and enhances the release of other pro-apoptotic factors, such as cytochrome c (cyt c) and Smac/DIABLO.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma