model-based clustering

An Introduction to Clustering with R

The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature.

A model with space-varying regression coefficients for clustering multivariate spatial count data

Multivariate spatial count data are often segmented by unobserved space-varying factors that vary across space. In this setting, regression models that assume space-constant covariate effects could be too restrictive. Motivated by the analysis of cause-specific mortality data, we propose to estimate space-varying effects by exploiting a multivariate hidden Markov field. It models the data by a battery of Poisson regressions with spatially correlated regression coefficients, which are driven by an unobserved spatial multinomial process.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma