mTOR

mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia

The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase involved in the regulation of protein synthesis and degradation, longevity and cytoskeletal formation. The mTOR pathway represents a key growth and survival pathway involved in several diseases such as cancer, obesity, cardiovascular disease and neurodegenerative diseases. Numerous studies linked the alterations of mTOR pathway to age-dependent cognitive decline, pathogenesis of Alzheimer disease (AD) and AD-like dementia in Down syndrome (DS).

Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome

Background: Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression.

BVR-A deficiency leads to autophagy impairment through the dysregulation of AMPK/mTOR axis in the brain—Implications for neurodegeneration

Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A−/−) and wild-type (WT) mice.

Inhibition of phosphoinositide 3-kinase/protein kinase B signaling hampers the vasopressin-dependent stimulation of myogenic differentiation

Arginine-vasopressin (AVP) promotes muscle differentiation, hypertrophy, and regeneration through the combined activation of the calcineurin and Calcium/Calmodulin-dependent Protein Kinase (CaMK) pathways. The AVP system is impaired in several neuromuscular diseases, suggesting that AVP may act as a physiological factor in skeletal muscle. Since the Phosphoinositide 3-kinases/Protein Kinase B/mammalian Target Of Rapamycin (PI3K/Akt/mTOR) signaling plays a significant role in regulating muscle mass, we evaluated its role in the AVP myogenic effect.

A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis

Amplification and/or activation of the c-Myc protooncogene is one of the leading genetic events along hepatocarcinogenesis. The oncogenic potential of c-Myc has been proven experimentally by the finding that its overexpression in the mouse liver triggers tumor formation. However, the molecular mechanism whereby c-Myc exerts its oncogenic activity in the liver remains poorly understood. Here, we demonstrate that the mammalian target of rapamycin complex 1 (mTORC1) cascade is activated and necessary for c-Myc dependent hepatocarcinogenesis.

Comparison of the effects of synthetic and plant-derived mTOR regulators on healthy human ovarian cells

The aim of the present in vitro study was to compare the effects of synthetic and plant-derived mTOR regulators on healthy human ovarian cells. We compared the effect of two synthetic mammalian mTOR blockers MC2141 and MC2183 with that of natural/plant-derived mTOR blocker rapamycin and mTOR activator resveratrol on cultured human ovarian granulosa cells. We evaluated the accumulation of markers for the mTOR system (sirtuin 1; SIRT 1), proliferation (PCNA), and apoptosis (caspase 3) along with the expression of the transcription factor p53 by quantitative immunocytochemistry.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma