Multi-access edge computing

Optimal association of mobile users to multi-access edge computing resources

Multi-access edge computing (MEC) plays a key role in fifth-generation (5G) networks in bringing cloud functionalities at the edge of the radio access network, in close proximity to mobile users. In this paper we focus on mobile-edge computation offloading, a way to transfer heavy demanding, and latency-critical applications from mobile handsets to close-located MEC servers, in order to reduce latency and/or energy consumption.

Dynamic joint resource allocation and user assignment in multi-access edge computing

Multi-Access Edge Computing (MEC) is one of the key technology enablers of the 5G ecosystem, in combination with the high speed access provided by mmWave communications. In this paper, among all services enabled by MEC, we focus on computation offloading, devising an algorithm to optimize computation and communication resources jointly with the assignment of mobile users to Access Points and Mobile Edge Hosts, in a dynamic scenario where computation tasks are continuously generated according to (unknown) random arrival processes at each user.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma