multi-objective optimization

Multi-objective approach to the optimization of shape and envelope in building energy design

In accordance with national and international regulations, the energy usage and emissions of buildings need to be reduced. Both new constructions and retrofit actions should consider the strict requirements of a more sustainable built environment. In many cases, passive and active strategies are only added to the project after an initial conceptual design of the building has already been drawn up, thus limiting their effective integration into the construction as well as their efficacy.

Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms

The energy requalification of existing buildings entails the fulfillment of different, often conflicting, criteria, such as the reduction of the specific annual energy demand, the containment of the construction costs, the decrease in the annual energy operating cost and the reduction of climate-change gas emissions. Therefore, optimization methods based on the application of computational algorithms are essential to determine solutions that meet multi-objective criteria and so highly optimized to be on the Pareto frontier.

Multi-objective optimization of building retrofit in the Mediterranean climate by means of genetic algorithm application

Nowadays, as the role of energy retrofit on the existing building stock is recognized towards energy savings and emissions’ reductions, the actions to be undertaken towards this aim require complex decisions, in terms of the choice among active and passive strategies and among often conflicting objectives of the retrofit. Depending on the actor of the retrofit (e.g., private, public), the main objective could be minimizing the investment, minimizing the energy demand or cost, or minimizing emissions.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma