MWCNT

Develop Boltzmann equation to simulate non-Newtonian magneto-hydrodynamic nanofluid flow using power law magnetic Reynolds number

The single relaxation D2Q9 lattice Boltzmann method (LBM) is run in the current research beside the generalized power law model for simulation of non‐Newtonian magneto‐hydrodynamics (MHD) laminar flow field inside a channel with local symmetric constriction. Analytical results of non‐Newtonian fluid flow in a channel without magnetic field, as well as Newtonian fluid flow at various Hartmann No., are used to validate the numerical model. Then, fluid flow simulation is performed for non‐Newtonian fluid with different power law index at various Hartmann No. (Ha ) whereas Reynolds No.

Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: Characterization and numerical modeling patterns

Nanofluid is divided in two major section, mono nanofluid (MN) and hybrid nanofluid (HN). MN is created when a solid nanoparticle disperses in a fluid, whereas HN has more than one solid nanomaterial. In this research, iron (III) oxide (Fe3O4) is MN, and Fe3O4 plus multiwalled carbon nanotube (MWCNT) is HN, whereas both are mixed and dispersed into the water basefluid. Thermal conductivity (TC) of Fe3O4/water and MWCNT/Fe3O4/water was measured after preparation and numerical model performed on the resulted data.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma