Nanocomposite materials

Experimental study of solar radiation effects on carbon nanocomposite sensors in simulated space environment

Solar radiation, generally referred to the electromagnetic radiation emitted by the Sun, constitutes one of the most critical risks for human exploration in space. Whereas on Earth such radiation is filtered for the shorter and highly hazardous wavelengths by the atmosphere and its ozone layer, in space solar radiation has profound and adverse effects on the structural and electronic components of spacecrafts, as well as on biological systems, if they are not properly shielded.

Electrical resistance tomography for structural health monitoring of nanocomposite materials for spacesuit and crew surface mobility applications

Electrical Impedance Tomography (EIT) is an unobtrusive and portable monitoring method allowing the reconstruction of the electrical conductivity in a 2D domain of interest, from the voltage measurements of electrodes positioned along the boundary of the domain. Electrical conductivity changes can be correlated to damage. EIT has been used in biomedical engineering applications (e.g. to monitor the brain function as a patient loses consciousness from anesthesia) and for structural health of advanced composite materials subject to mechanical damage.

Influence of magnetite nanoparticles on the dielectric properties of metal oxide/polymer nanocomposites based on polypropylene

Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide
(Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by
scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by
means of E7-21 impedance spectrometer in the frequency range of 102–106 Hz and temperature interval of
298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma