nanofluid

Buoyancy-induced convection of water-based nanofluids from an enclosed heated cylinder

Laminar natural convection of nanofluids in a square cooled cavity enclosing a heated horizontal cylinder is studied numerically. This paper aims to investigate in what measure the nanoparticle size and average volume fraction, the cavity width, the cylinder diameter and position, the average temperature of the nanofluid and the temperature difference imposed between the cylinder and the cavity walls, affects the basic heat and fluid flow features, as well as the thermal performance of the nanofluid relative to that of the base liquid.

Natural convection from a pair of differentially-heated horizontal cylinders aligned side by side in a nanofluid-filled inclined square enclosure

A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection from a pair of differentially heated cylinders aligned side by side in a nanofluid-filled inclined square enclosure, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase.

A novel sensitivity analysis model of EANN for F-MWCNTs–Fe 3 O 4 /EG nanofluid thermal conductivity: outputs predicted analytically instead of numerically to more accuracy and less costs a novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/E

The new approach of “enhanced artificial neural network” (EANN) is developed based on the new generated hybrid nanocomposite of F-MWCNTs–Fe 3 O 4 /EG which represents the Functionalized Multi Walled Carbon Nano Tubes together with Fe 3 O 4 nanoparticles, dispersed in ethylene glycol (EG) as the base fluid. Moreover, a new suitable sensitivity analysis is presented which involves a novel proposed method for the sensitivity analysis via ANNs. In this method, the sensitivity of the outputs predicted by means of an ANN to the inputs is calculated analytically rather than numerically.

Buoyancy-driven convection of nanofluids in inclined enclosures

A two-phase model based on the double-diffusive approach is used to perform a numerical study on natural convection of water-based nanofluids in square cavities differentially heated at two opposite walls, and inclined with respect to gravity so that the heated wall faces upwards. It is assumed that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase.

Thermophoresis-induced oscillatory natural convection flows of water-based nanofluids in tilted cavities

A two-phase model based on the double-diffusive approach is used to perform a numerical study on the natural convection of water-based nanofluids in differentially heated square cavities, inclined with respect to gravity so that the heated wall is positioned below the cooled wall, assuming that Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma