nanoporous electrode

Adsorption dynamics of redox active species onto polarized surfaces of sensitized NiO

Mesoporous NiO films were deposited by means of a screen printing technique onto fluorine-doped tin oxide transparent electrodes and consequently sensitized with Erythrosin B (EryB) dye. The obtained colored NiO material was used as a working electrode in a three-electrode cell to study the evolution of the triple semiconductor/dye/electrolyte interface upon electrochemical polarization in dark conditions. The electrolyte was a solution of I3 -/I- in acetonitrile, with the redox couple representing the typical redox shuttle of dye-sensitized solar cells (DSCs).

Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2–6 m)
onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical
cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks
of NiO oxidation which were associated to the surface-confined redox processes Ni(II) ? Ni(III) and

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma