neural circuits

A network activity reconfiguration underlies the transition from goal to action

Neurons in prefrontal cortex (PF) represent mnemonic information about current goals until the action can be selected and executed. However, the neuronal dynamics underlying the transition from goal into specific actions are poorly understood. Here, we show that the goal-coding PF network is dynamically reconfigured from mnemonic to action selection states and that such reconfiguration is mediated by cell assemblies with heterogeneous excitability. We recorded neuronal activity from PF while monkeys selected their actions on the basis of memorized goals.

Flexible use of allocentric and egocentric spatial memories activates differential neural networks in mice

Goal-directed navigation can be based on world-centered (allocentric) or body-centered (egocentric) representations of the environment, mediated by a wide network of interconnected brain regions, including hippocampus, striatum and prefrontal cortex. The relative contribution of these regions to navigation from novel or familiar routes, that demand a different degree of flexibility in the use of the stored spatial representations, has not been completely explored.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma