non-metric spaces analysis

Granular computing techniques for bioinformatics pattern recognition problems in non-metric spaces

Computational intelligence and pattern recognition techniques are gaining more and more attention as the main computing tools in bioinformatics applications. This is due to the fact that biology by definition, deals with complex systems and that computational intelligence can be considered as an effective approach when facing the general problem of complex systems modelling. Moreover, most data available on shared databases are represented by sequences and graphs, thus demanding the definition of meaningful dissimilarity measures between patterns, which are often non-metric in nature.

Efficient approaches for solving the large-scale k-medoids problem: Towards structured data

The possibility of clustering objects represented by structured data with possibly non-trivial geometry certainly is an interesting task in pattern recognition. Moreover, in the Big Data era, the possibility of clustering huge amount of (structured) data challenges computer science and pattern recognition researchers alike. The aim of this paper is to bridge the gap on large-scale structured data clustering.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma