non-negative matrix factorization

Separation of drum and bass from monaural tracks

In this paper, we propose a deep recurrent neural network (DRNN), based on the Long Short-Term Memory (LSTM) unit, for the separation of drum and bass sources from a monaural audio track. In particular, a single DRNN with a total of six hidden layers (three feedforward and three recurrent) is used for each original source to be separated. In this work, we limit our attention to the case of only two, challenging sources: drum and bass. Some experimental results show the effectiveness of the proposed approach with respect to another state-of-the-art method.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma