NRF2

Heme oxygenase-1 in central nervous system malignancies

Central nervous system tumors are the most common pediatric solid tumors and account for 20%-25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin.

The NRF2 Signaling Network Defines Clinical Biomarkers and Therapeutic Opportunity in Friedreich's Ataxia

Friedreich's ataxia (FA) is a trinucleotide repeats expansion neurodegenerative disorder, for which no cure or approved therapies are present. In most cases, GAA trinucleotide repetitions in the first intron of the FXN gene are the genetic trigger of FA, determining a strong reduction of frataxin, a mitochondrial protein involved in iron homeostasis. Frataxin depletion impairs iron-sulfur cluster biosynthesis and determines iron accumulation in the mitochondria.

Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement

DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression.

Controversy about pharmacological modulation of Nrf2 for cancer therapy

Conventional anticancer therapies such as radiotherapy and chemotherapies are associated with oxidative stress generating reactive oxygen species (ROS) and reactive aldehydes like 4-hydroxynonenal in cancer cells that govern them to die. The main mechanism activated due to exposure of the cell to these reactive species is the Nrf2-Keap1 pathway. Although Nrf2 was firstly perceived as a tumor suppressor that inhibits tumor initiation and cancer metastasis, more recent data reveal its role also as a pro-oncogenic factor.

Yeast-Based Screen to Identify Natural Compounds with a Potential Therapeutic Effect in Hailey-Hailey Disease

The term orthodisease defines human disorders in which the pathogenic gene has orthologs in model organism genomes. Yeasts have been instrumental for gaining insights into the molecular basis of many human disorders, particularly those resulting from impaired cellular metabolism. We and others have used yeasts as a model system to study the molecular basis of Hailey-Hailey disease (HHD), a human blistering skin disorder caused by haploinsufficiency of the gene ATP2C1 the orthologous of the yeast gene PMR1. We observed that K.

A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status

Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies.

Cytotoxic drugs activate KSHV lytic cycle in latently infected PEL cells by inducing a moderate ROS increase controlled by HSF1, NRF2 and p62/SQSTM1

Previous studies have indicated that cytotoxic treatments may induce or not activate viral lytic cycle activation in cancer cells latently infected by Kaposi’s sarcoma-associated herpesvirus (KSHV). To investigate the molecular mechanisms responsible for such an effect, we compared two cytotoxic treatments able to induce the viral lytic cycle, named 12-O-tetradecanoylphorbol 13-acetate (TPA) (T) in combination with sodium butyrate (B) and bortezomib (BZ), with two cytotoxic treatments that did not activate this process, named metformin (MET) and quercetin (Q).

Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences

Autophagy is a catabolic process whose activation may help cancer cells to adapt to cellular stress although, in some instances, it can induce cell death. Autophagy stimulation or inhibition has been considered an opportunity to treat cancer, especially in combination with anticancer therapies, although autophagy manipulation may be viewed as controversial. Thus, whether to induce or to inhibit autophagy may be the best option in the different cancer patients is still matter of debate.

Mutant p53, stabilized by its interplay with HSP90, activates a positive feed-back loop between NRF2 and p62 that induces chemio-resistance to Apigenin in pancreatic cancer cells

Pancreatic cancer is one of the most aggressive cancers whose prognosis is worsened by the poor response to the current chemotherapies. In this study, we investigated the cytotoxic effect of Apigenin, against two pancreatic cell lines, namely Panc1 and PaCa44, harboring different p53 mutations. Apigenin is a flavonoid widely distributed in nature that displays anti-inflammatory and anticancer properties against a variety of cancers. Here we observed that Apigenin exerted a stronger cytotoxic effect against Panc1 cell line in comparison to PaCa44.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma