optic flow

Stable or able? Effect of virtual reality stimulation on static balance of post-stroke patients and healthy subjects

Over the last decades, virtual reality (VR) emerged as a potential tool for developing new rehabilitation treatments in neurological patients. However, despite the increasing number of studies, a clear comprehension about the impact of immersive VR-treatment on balance and posture is still scarce. In the present study, we aimed to investigate the effects of VR cues on balance performances of subjects affected by stroke, age-matched healthy subjects, and young healthy subjects.

Egomotion-related visual areas respond to active leg movements

Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task-evoked activity and resting-state functional connectivity by fMRI.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma