organ growth

Arabidopsis primary root growth: let it grow, can't hold it back anymore!

In multicellular organisms, growth is defined by those processes that allow an organ to increase in mass, namely cell proliferation - that increases the number of cells - and cell expansion - that increases their volume. For an organ to achieve a functional shape and a characteristic final size both these processes need to be tightly coordinated. In roots, these processes stand behind root primary growth, which results in lengthening of the root along its longitudinal axis, and secondary growth, which results in an increase of the root thickness.

A Self-Organized PLT/Auxin/ARR-B Network Controls the Dynamics of Root Zonation Development in Arabidopsis thaliana

During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes.

The Lateral Root Cap Acts as an Auxin Sink that Controls Meristem Size

Plant developmental plasticity relies on the activities of meristems, regions where stem cells continuously produce new cells [1]. The lateral root cap (LRC) is the outermost tissue of the root meristem [1], and it is known to play an important role during root development [2-6]. In particular, it has been shown that mechanical or genetic ablation of LRC cells affect meristem size [7, 8]; however, the molecular mechanisms involved are unknown.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma