parallel computing

Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training

We consider the convex quadratic linearly constrained problem
with bounded variables and with huge and dense Hessian matrix that arises
in many applications such as the training problem of bias support vector machines.
We propose a decomposition algorithmic scheme suitable to parallel implementations
and we prove global convergence under suitable conditions. Focusing
on support vector machines training, we outline how these assumptions
can be satisfied in practice and we suggest various specific implementations.

Semi-supervised echo state networks for audio classification

Echo state networks (ESNs), belonging to the wider family of reservoir computing methods, are a powerful tool for the analysis of dynamic data. In an ESN, the input signal is fed to a fixed (possibly large) pool of interconnected neurons, whose state is then read by an adaptable layer to provide the output. This last layer is generally trained via a regularized linear least-squares procedure.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma