particle accelerator

Design of the Target Dump Injection Segmented (TDIS) in the framework of the High Luminosity Large Hadron Collider (HL-LHC) project

The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In this scenario, most equipment has to be redesigned and rebuilt. In particular, beam intercepting devices (such as dumps, collimators, absorbers and scrapers) have to withstand impact or scraping of the new intense HL-LHC beams without failure. Furthermore, minimizing the electromagnetic beam-device interactions is also a key design driver since they can lead to beam instabilities and excessive thermo-mechanical loading of devices.

Longitudinal Mode-Coupling Instability: GALACLIC vlasov solver vs. macroparticle tracking simulations

Following the same approach as for the recently developed GALACTIC Vlasov solver in the transverse plane and taking into account the potential-well distortion, a new Vlasov solver, called GALACLIC, was developed for the longitudinal plane. In parallel, a new mode analysis was implemented for the post-processing of the results obtained through macroparticle tracking simulations. The results of the several benchmarks performed between the two methods are presented.

Study of collective effects in the FCC-ee collider

The Future Circular Collider (FCC) study aims at designing different options of a post- LHC collider. The high luminosity electron-positron collider FCC-ee based on the crab waist concept is considered as an intermediate step on the way towards FCC-hh, a 100 TeV hadron collider using the same tunnel of about 100 km. Due to a high intensity of circulating beams the impact of collective effects on FCC-ee performance has to be carefully analyzed.

Analysis on the thermal response to beam impedance heating of the post LS2 proton synchrotron beam dump

The High Luminosity Large Hadron Collider (HL-LHC) and the LHC-Injection Upgrade (LIU) projects at CERN are upgrading the whole CERN accelerators chain to increase beam brightness and intensity. In this scenario, some critical machine components have to be redesigned and rebuilt. Due to the increase in beam intensity, minimizing the electromagnetic interaction between the beam and devices is a crucial design task. Indeed, these interactions could lead to beam instabilities and excessive thermo-mechanical loadings in the device.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma