Particle Therapy

Performance of the ToF detectors in the foot experiment

The FOOT (FragmentatiOn Of Target) experiment aims to deter- mine the fragmentation cross-sections of nuclei of interest for particle therapy and radioprotection in space. The apparatus is composed of several detectors that allow fragment identification in terms of charge, mass, energy and direction. The frag- ment time of flight (ToF) along a lever arm of ∼2 m is used for particle ID, requiring a resolution below 100ps to achieve a sufficient resolution in the fragment atomic mass identification.

Inter-fractional monitoring of 12 C ions treatments: results from a clinical trial at the CNAO facility

The high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback.

The MONDO tracker: characterisation and study of secondary ultrafast neutrons production in carbon ion radiotherapy

Secondary neutrons produced in particle therapy (PT) treatments are responsible for the delivery of a large fraction of the out-of-target dose as they feebly interact with the patient body. To properly account for their contribution to the total dose delivered to the patient, a high precision experimental characterisation of their production energy and angular distributions is eagerly needed.

In-room test results at CNAO of an innovative PT treatments online monitor (Dose Profiler)

The use of C, He and O ions as projectiles in Particle Therapy (PT) treatments is getting more and more widespread as a consequence of their enhanced relative biological effectiveness and oxygen enhancement ratio, when compared to the protons one. The advantages related to the incoming radiation improved efficacy are requiring an accurate online monitor of the dose release spatial distribution.

Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector

Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume.

Development and characterization of a ΔE-TOF detector prototype for the FOOT experiment

This paper describes the development and characterization of a ΔE-TOF detector composed of a plastic scintillator bar coupled at both ends to silicon photomultipliers. This detector is a prototype of a larger version which will be used in the FOOT (FragmentatiOn Of Target) experiment to identify the fragments produced by ion beams accelerated onto a hydrogen-enriched target.

Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles

Particle therapy is a therapy technique that exploits protons or light ions to irradiate tumor targets with high accuracy. Protons and 12C ions are already used for irradiation in clinical routine, while new ions like 4He and 16O are currently being considered. Despite the indisputable physical and biological advantages of such ion beams, the planning of charged particle therapy treatments is challenged by range uncertainties, i.e. the uncertainty on the position of the maximal dose release (Bragg Peak – BP), during the treatment.

Charged particles and neutron trackers: applications to particle therapy

The use of C, He and O as beam particles in Particle Therapy (PT) treatments is getting more and more widespread as a consequence of the enhanced relative biological effectiveness and oxygen enhancement ratio of such projectiles with respect to protons. The advantages in the tumor control probability, related to the improved efficacy of ions, are calling for an online monitor of the dose release spatial distribution. Such technology is currently missing in PT treatments clinical routine.

Secondary radiation measurements for particle therapy applications: Prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing.

Fred: A GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy

Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam–body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma