patch clamp

Optonongenetic enhancement of activity in primary cortical neurons

It has been recently demonstrated that the exposure of naive neuronal cells to light—at the basis of optogenetic techniques and calcium imaging measurements—may alter neuronal firing. Indeed, understanding the effect of light on nongenetically modified neurons is crucial for a correct interpretation of calcium imaging and optogenetic experiments. Here we investigated the effect of continuous visible LED light exposure (490 nm, 0.18−1.3 mW/mm2) on spontaneous activity of primary neuronal networks derived from the early postnatal mouse cortex.

3D bioprinted human cortical neural constructs derived from induced pluripotent stem cells

Bioprinting techniques use bioinks made of biocompatible non-living materials and cells to build 3D constructs in a controlled manner and with micrometric resolution. 3D bioprinted structures representative of several human tissues have been recently produced using cells derived by differentiation of induced pluripotent stem cells (iPSCs). Human iPSCs can be differentiated in a wide range of neurons and glia, providing an ideal tool for modeling the human nervous system.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma