Pattern recognition

Artificial Intelligence for Electrical Engineering

Artificial Intelligence for Electrical Engineering

La gestione dell'energia è un fattore chiave per la crescita e lo sviluppo della società. La previsione del consumo e della produzione di energia è diventata un'esigenza cruciale per migliorare le prestazioni energetiche e la sostenibilità ambientale. Nell'ambito delle fonti energetiche rinnovabili, lo sviluppo di nuovi paradigmi di deep learning rappresenta un'importante sfida per lo sviluppo sostenibile.

Neural Network Systems & Applications (NESYA)

Neural Network Systems & Applications (NESYA)

NESYA è un gruppo di ricerca al quale partecipano docenti e giovani ricercatori del Dipartimento di Ingegneria dell'Informazione, Elettronica e Telecomunicazioni (DIET) dell'Università degli Studi di Roma "La Sapienza". All'interno di NESYA sono anche coinvolti gli studenti di laurea di primo e secondo livello delle due Facoltà di Ingegneria di Sapienza, durante lo svolgimento delle loro attività didattiche di laboratorio e soprattutto durante il loro periodo di tesi.

Fusing Self-Organized Neural Network and Keypoint Clustering for Localized Real-Time Background Subtraction

Moving object detection in video streams plays a key role in many computer vision applications. In particular, separation between background and foreground items represents a main prerequisite to carry out more complex tasks, such as object classification, vehicle tracking, and person re-identification. Despite the progress made in recent years, a main challenge of moving object detection still regards the management of dynamic aspects, including bootstrapping and illumination changes.

Measurement of the electron reconstruction efficiency at LHCb

The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B
+ → J/ψ(e
+
e

)K
+ decays, where one of the electrons is fully reconstructed
and paired with the kaon, while the other electron is reconstructed using only the information of
the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow

An enhanced filtering-based information granulation procedure for graph embedding and classification

Granular Computing is a powerful information processing paradigm for synthesizing advanced pattern recognition systems in non-conventional domains. In this paper, a novel procedure for the automatic synthesis of suitable information granules is proposed. The procedure leverages a joint sensitivity-vs-specificity score that accounts the meaningfulness of candidate information granules for each class considered in the classification problem at hand.

A learning intelligent system for classification and characterization of localized faults in Smart Grids

The worldwide power grid can be thought as a System of Systems deeply embedded in a time-varying, non-deterministic and stochastic environment. The availability of ubiquitous and pervasive technology about heterogeneous data gathering and information processing in the Smart Grids allows new methodologies to face the challenging task of fault detection and modeling. In this study, a fault recognition system for Medium Voltage feeders operational in the power grid in Rome, Italy, is presented.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma