PbLi

Electromagnetic coupling phenomena in co-axial rectangular channels

In the Water-Cooled Lithium Lead (WCLL) blanket, the eutectic alloy lithium-lead (PbLi) is used as tritium breeder and carrier, neutron multiplier and heat transfer medium. The liquid metal is distributed to and collected from the breeding zone through a compact poloidal manifold composed of two co-axial rectangular channels. The external channel, tasked with distribution, and the internal one, assigned to the collection, are co-flowing and share an electrically conductive wall (c_w=0.1).

MHD forced convection flow in dielectric and electro-conductive rectangular annuli

The Breeding Blanket is a fundamental component of a nuclear fusion reactor and the Water-Cooled Lead Lithium (WCLL) blanket is one of the possible solutions proposed. In this concept, liquid lithium-lead eutectic alloy (PbLi) serves as tritium breeder, tritium carrier and neutron multiplier. The liquid metal is distributed within the breeding zone by two co-axial rectangular channels and, interacting with the reactor magnetic field, leads to the arising of MagnetoHydroDynamic (MHD) effects.

MHD pressure drop estimate for the WCLL in-magnet PbLi loop

In the Water-Cooled Lithium Lead (WCLL) blanket, the eutectic alloy lithium-lead (PbLi) is used as tritium breeder and carrier, neutron multiplier, and heat transfer medium. The PbLi hydraulic loop section in the range of the reactor field coils, which includes the blanket and a non-negligible length of the connection pipes, is affected by intense magnetic fields which cause the transition to a MHD regime. Lorentz forces oppose the fluid motion and cause pressure losses several orders of magnitude higher than for the ordinary hydrodynamic regime.

Influence of PbLi hydraulic path and integration layout on MHD pressure losses

A critical point in the design of liquid metal blankets for fusion reactors is the accurate estimate of magnetohydrodynamic (MHD) pressure losses caused by the interaction between flowing breeder and magnetic field. In the Water-Cooled Lithium Lead (WCLL), the liquid metal (PbLi) is used as tritium breeder and carrier, whereas power extraction is delegated to water, thus allowing to minimize the breeder velocity. However, pressure drop for the PbLi loop is expected to remain significant due to high field intensity and direct electrical contact at fluid/wall interface.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma