PEM fuel cells

Polymer electrolyte membranes based on Nafion and a superacidic inorganic additive for fuel cell applications

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC).

A nonlinear H-infinity approach to optimal control of PEM fuel cells

A new nonlinear H-infinity control approach is applied to PEM fuel cells. First, the dynamic model of the PEM fuel cells undergoes approximate linearisation, through Taylor series expansion, round local operating points which are defined at each time instant by the present value of the system's state vector and the last value of the control input that was exerted on it. The linearisation procedure requires the computation of Jacobian matrices at the aforementioned operating points.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma