pharmaceutical science

Effect of α-methoxy substitution on the anti-HIV activity of dihydropyrimidin-4(3 H)-ones

Conformational restriction applied to dihydrobenzylpyrimidin-4-(3H)-ones (DABOs) by the intoduction of a methyl group at the α-benzylic position is known to massively improve the anti-HIV-1 activity of these compounds. Here, we report the effects of methoxy substitution at the α-benzylic position in S-, NH-, and N,N-DABOs carrying 2,6-difluoro, 2-chloro-6-fluoro, or 2,6-dichloro substituted benzyl moieties.

Novel benzazole derivatives endowed with potent antiheparanase activity

Heparanase is the sole mammalian enzyme capable of cleaving glycosaminoglycan heparan sulfate side chains of heparan sulfate proteoglycans. Its altered activity is intimately associated with tumor growth, angiogenesis, and metastasis. Thus, its implication in cancer progression makes it an attractive target in anticancer therapy. Herein, we describe the design, synthesis, and biological evaluation of new benzazoles as heparanase inhibitors.

Gellan nanohydrogels: novel Nanodelivery systems for cutaneous administration of piroxicam

The feasibility to use gellan nanohydrogels (Ge-NHs) as delivery system for the cutaneous administration of piroxicam (PRX) was investigated using gellan conjugated with cholesterol or riboflavin. The in vitro skin penetration studies through human epidermis were performed using a saturated aqueous drug solution, a 50% w/v Transcutol aqueous solution, and a commercially available PRX plaster as controls. Confocal microscopy, ATR-FTIR spectroscopy, circular dichroism, and a dynamometer assisted extrusion assay were performed to clarify the permeation mechanism of Ge-NHs.

Naturally occurring diels-alder-type adducts from morus nigra as potent inhibitors of mycobacterium tuberculosis protein tyrosine phosphatase B

Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatases A and B (PtpA and PtpB) have been recognized as potential molecular targets for the development of new therapeutic strategies against tuberculosis (TB). In this context, we have recently reported that the naturally occurring Diels-Alder-type adduct Kuwanol E is an inhibitor of PtpB (Ki = 1.6 ± 0.1 μM). Here, we describe additional Diels-Alder-type adducts isolated from Morus nigra roots bark that inhibit PtpB at sub-micromolar concentrations.

The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds

This review article is aimed at providing an overview of the current market of chiral drugs by exploring which is the nowadays tendency, for the pharmaceutical industry, either to exploit the chiral switching practice from already marketed racemates or to develop de novo enantiomerically pure compounds. A concise illustration of the main techniques developed to assess the absolute configuration (AC) and enantiomeric purity of chiral drugs has been given, where greater emphasis was placed on the contribution of enantioselective chromatography (HPLC, SFC and UHPC).

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma