phase

Hydrogen bonding as a clustering agent in protic ionic liquids: like-charge vs opposite-charge dimer formation

The local structure of a series of homologous protic ionic liquids (PILs) is investigated using ab initio computations and ab initio-based molecular dynamics. The purpose of this work is to show that in PILs the network of hydrogen bonds may promote like-charge clustering between anionic species. We correlate the theoretical evidence of this possibility with viscosity experimental data. The homologous series of liquids is obtained by coupling choline with amino acid anions and varying the side chain.

Hydrogen bonding features in cholinium-based protic ionic liquids from molecular dynamics simulations

We explore the structure of a series of protic Ionic Liquids based on the choline cation and amino acid anions. In the series, the length and the branching of the amino acid alkyl chain varies. Ab initio molecular dynamics, X-ray diffraction measurements, and infrared spectra have been used to provide a reliable picture of the short-range structure and of the short-time dynamic process that characterize the fluids. We have put special emphasis on the peculiar and complicated network of hydrogen bonds that stem from the amphoteric nature of the anion moiety.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma